If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x=7x^2
We move all terms to the left:
7x-(7x^2)=0
determiningTheFunctionDomain -7x^2+7x=0
a = -7; b = 7; c = 0;
Δ = b2-4ac
Δ = 72-4·(-7)·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-7}{2*-7}=\frac{-14}{-14} =1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+7}{2*-7}=\frac{0}{-14} =0 $
| z+12.6=-5.9 | | 51/4y=25 | | x^2-2x+1/3=0 | | −176=119t | | a/3=+4=6 | | 2(3-4)=4r=3 | | 3/4x-8=1/4x+9 | | 3x−2.4=9.6 | | z-6/19=0 | | 27z^2-21z+2=0 | | -3x-3(5x-15)=-81 | | b/4+1/3=19 | | 1/x-4=3/x-5 | | 3k-5(k-5)=-4+5k | | -18u+(-2u)-13u+17u-(-11u)-(-17)=-18 | | 30+9a=-4(7a+3) | | 3(p+5)-(p-8)=23 | | y=1/2(-5+6) | | (2y+8)^2-(64)=0 | | 18y-21=15+13 | | (x-8)^2=49 | | Y=10x+115 | | 3x=(5/9)(x-32) | | 28=5x-2(2x-18) | | 15=-t^2+8t | | (-2i)(5-2i)=0 | | 2p+7p+(-20p)+8p=15 | | Y=-3x^2+22x-7 | | Y=2x-6/7 | | -5z+9.75=5.15 | | 1/4z=5 | | 8(1+3b)=(b-7) |